
Articles
https://doi.org/10.1038/s41591-022-01894-0

1Malone Center for Engineering in Healthcare, Johns Hopkins University, Baltimore, MD, USA. 2Department of Psychiatry and Behavioral Science, Johns 
Hopkins School of Medicine, Baltimore, MD, USA. 3Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA. 4Howard County 
General Hospital, Columbia, MD, USA. 5Health Informatics, University of California, San Francisco, CA, USA. 6Armstrong Institute for Patient Safety and 
Quality, Johns Hopkins School of Medicine, Baltimore, MD, USA. 7Department of Quality Improvement, Johns Hopkins Hospital, Baltimore, MD, USA. 
8Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA. 9Suburban Hospital, Bethesda, MD, USA. 10Department of Emergency 
Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA. 11Department of Medicine, Johns Hopkins Hospital, Baltimore, MD, USA. 12Department 
of Health Policy and Management, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA. 13Department of Epidemiology, Johns Hopkins 
Bloomberg School of Public Health, Baltimore, MD, USA. 14Department of International Health, Johns Hopkins Bloomberg School of Public Health, 
Baltimore, MD, USA. 15Bayesian Health, New York, NY, USA. ✉e-mail: awu@jhu.edu; ssaria@cs.jhu.edu

Sepsis is a leading cause of in-hospital death in the United States, 
with a recent study finding sepsis as the immediate cause of 
nearly 35% of in-hospital deaths1. Effective intervention has 

been elusive; the current state has been referred to as a ‘treatment 
graveyard’2 because few effective sepsis treatments have been devel-
oped and there is persistent debate about best treatment practices2,3. 
There is agreement that early recognition and treatment are critical 
to successful outcomes4. Early administration of broad-spectrum 
intravenous antibiotics, in particular, is associated with decreased 
mortality and morbidity5–10. However, heterogeneity in the pre-
sentation of sepsis often makes early recognition challenging, and 
many patients receive delayed care1. This has spurred interest in the 
development of automated sepsis early warning systems to help cli-
nicians recognize sepsis as early as possible.

Several retrospective studies have demonstrated that machine 
learning (ML)-based models can detect sepsis early11–15. However, 
few studies have reported on clinical implementations of these 
models11,16,17. Although the existing implementation studies of both 
general18 and sepsis-specific alert systems11,16,17,19,20 demonstrate the 
feasibility of deployment, several of these studies have relied on 

dedicated staff to respond to alerts and the reported clinical value 
has been mixed, with clinical suspicion of sepsis often noted before 
alerts19,20. Additional studies are needed to understand the impact 
of sepsis-specific early warning systems on patient outcomes and 
to demonstrate the potential of decentralized bedside alert systems.

After 3 years of development, the TREWS ML-based early warn-
ing system was deployed21, starting in 2018 as part of an electronic 
health record (EHR)-based sepsis alert system in two academic and 
three community hospitals in the Maryland and DC areas. Details 
of the model, deployment and workflow are described in a compan-
ion paper22. Of note, when a TREWS alert occurs, providers may 
open a dedicated TREWS page in the electronic medical record 
system (in this case, Epic) and, from that page, may enter an evalu-
ation of the patient as having sepsis or not. In a companion paper, 
we analyzed the predictive performance of TREWS, the adoption of 
TREWS by providers and the association between interaction with 
TREWS and the time between the alert and antibiotic ordering22. 
Notably, we found that sepsis patients who had their alert evaluated 
and confirmed within 3 h had a 1.85-h lower median time from alert 
to first antibiotic order22.
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Early recognition and treatment of sepsis are linked to improved patient outcomes. Machine learning-based early warning sys-
tems may reduce the time to recognition, but few systems have undergone clinical evaluation. In this prospective, multi-site 
cohort study, we examined the association between patient outcomes and provider interaction with a deployed sepsis alert 
system called the Targeted Real-time Early Warning System (TREWS). During the study, 590,736 patients were monitored by 
TREWS across five hospitals. We focused our analysis on 6,877 patients with sepsis who were identified by the alert before ini-
tiation of antibiotic therapy. Adjusting for patient presentation and severity, patients in this group whose alert was confirmed 
by a provider within 3 h of the alert had a reduced in-hospital mortality rate (3.3%, confidence interval (CI) 1.7, 5.1%, adjusted 
absolute reduction, and 18.7%, CI 9.4, 27.0%, adjusted relative reduction), organ failure and length of stay compared with 
patients whose alert was not confirmed by a provider within 3 h. Improvements in mortality rate (4.5%, CI 0.8, 8.3%, adjusted 
absolute reduction) and organ failure were larger among those patients who were additionally flagged as high risk. Our find-
ings indicate that early warning systems have the potential to identify sepsis patients early and improve patient outcomes and 
that sepsis patients who would benefit the most from early treatment can be identified and prioritized at the time of the alert
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In the present study, we analyzed the association between pro-
vider interaction with TREWS and patient outcomes for a target 
population of sepsis patients who had an alert before they received 
any antibiotics. Using EHR data collected from the five deployment 
sites, we conducted a prospective, multicenter, two-arm cohort 
study to evaluate the association between timely provider evalua-
tion and confirmation of the TREWS alert and mortality for a tar-
get population of sepsis patients who had an alert before receiving 
any antibiotics. Additional outcomes of interest are progression in a 
patient’s total sequential organ failure assessment (SOFA) score, fol-
lowing the alert, and length of stay. In a secondary analysis, we fur-
ther examined this association across patients identified as having 
increased risk of death in the absence of timely antibiotics, referred 
to henceforth as the high-risk cohort. This high-risk cohort was 
defined based on a secondary risk score that uses measurements 
available at or near the time of alert.

Results
Study population. During the study period, 590,736 patient encoun-
ters involving patients over the age of 18 years who presented to an 
emergency department (ED) or were admitted to an inpatient unit 
at one of the five deployment hospitals were monitored by TREWS. 
Of these encounters, 42,089 (7.1%) triggered an alert and 13,680 
(2.3%) met the retrospective criteria for sepsis23. Among encoun-
ters that triggered an alert, 24,799 (59%) had their first alert before 
admission to an inpatient unit, whereas 17,290 (41%) had their first 
alert after inpatient admission. A total of 6,877 patient encounters 
met the inclusion criteria for our target population: triggered an 
alert at most 1 h before ED triage or inpatient admission, met the 
retrospective definition for sepsis, received their first antibiotic after 
the alert and within 24 h of the alert and were not admitted directly 
to an intensive care unit (ICU). Of these, 2,366 were included in the 
high-risk cohort. In addition, 2,458 encounters involved patients 
who had sepsis but did not trigger an alert, and 3,006 encounters 
involved sepsis patients who received antibiotics before triggering 
an alert. These two off-target cohorts had lower general severity at 
admission than the primary analysis cohort (for example, the aver-
age Acute Physiology and Chronic Health Evaluation (APACHE II) 
and SOFA scores were lower in these groups), as well as having a 
lower in-hospital mortality rate. Figure 1 shows a waterfall diagram 
for the primary analysis cohort, and Table 1 shows summary sta-
tistics for all patients, sepsis patients with no alert, sepsis patients 
who received antibiotics before triggering an alert and our primary 
analysis cohort. A breakdown of the primary analysis cohort by hos-
pital can be found in Extended Data Table 1.

Association between response to TREWS and patient outcomes. 
Table 1 shows select summary statistics for the treatment and com-
parison groups, and Extended Data Table 2 shows a comparison of 
all variables. Among included patients, 4,220 (61%) had TREWS 
used as intended with their alert evaluated and confirmed within 3 h 
of the alert (study arm) and 2,657 (39%) did not (comparison arm). 
The full distribution of time from alert occurrence to alert confir-
mation is shown in Fig. 2. Among other differences, patients in the 
present study arm were older (67 versus 65 years, P < 0.001), had 
lower SOFA scores at the time of the alert (4.0 versus 4.3, P < 0.001) 
and were more likely to have a lactate >2 mmol l−1 (75% versus 61%, 
P < 0.001).

Table 2 shows the unadjusted outcomes and adjusted comparisons 
of outcomes between study and comparison arms. Patients in the 
treatment group had lower unadjusted mortality rates (14.6% versus 
19.2%, P < 0.001), improved SOFA score progression (−0.8 versus 
−0.4, P < 0.001) and lower median length of stay among survivors 
(6.6 d versus 8.1 d, P < 0.001). After adjustment for patient demo-
graphics, medical history, laboratory measurements, vital signs, 
comorbidities and admitting hospital, timely alert confirmation  

by the provider was associated with lower mortality (adjusted risk 
difference (ARD) −3.34%, CI −5.10, −1.67%, and adjusted rela-
tive reduction (ARR) −18.18%, CI −26.31, −9.65%; P < 0.001), 
improved SOFA progression (ARD −0.26; CI −0.42, −0.11; 
P = 0.001) and lower median length of stay among survivors (ARD 
−11.58 h, CI −18.13, −5.03 h; P = 0.001). In sensitivity analyses, 
none of the following changed the direction or significance of these 
associations: changing the estimation method; changing the data 
source for comorbidities, including only the first encounter for each 
patient and only encounters before the COVID-19 pandemic (that 
is, before 31 March 2020); or restricting the list of antibiotics used 
(Extended Data Table 3).

Sepsis is highly heterogeneous24, and there is evidence that the 
importance of early antibiotic therapy is similarly heterogeneous7,25. 
Considering this, we sought to estimate the associations between 
provider interaction with TREWS and patient outcomes among 
those patients who were predicted, based on baseline variables, to 
be most sensitive to antibiotic timing. We predicted sensitivity to 
antibiotic timing as the increase in predicted mortality risk when 
using a model trained on patients who received timely antibiotics 
(within 3 h of their alert) versus a model trained on those who did 
not (see Methods for details). This approach was based in part on 
existing methods for predicting which patients are likely to respond 

All adult patient encounters: 590,736

No antibiotics before alert: 8,209 

Retrospectively identified
sepsis: 13,680

Triggered an alert: 42,089

Antibiotics within 24 h of alert: 7,298 

Not admitted directly to ICU: 6,877 

Study: 4,220 Comparison: 2,657

Yes No

High-risk study: 1,430 High-risk comparison: 935

Alert confirmed w/in 3 h?

Alert at most 1 h before admission/triage and 
retrospectively identified sepsis: 11,215

Fig. 1 | Waterfall diagram for the primary analysis cohort. Waterfall 
diagram describing the primary analysis and high-risk cohorts. A total of 
590,736 unique adult patient encounters occurred during the study period. 
Of these, 6,877 patient encounters were included in our primary analysis, 
and 2,365 patient encounters were included in our analysis of high-risk 
patients.
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most to a particular treatment26. We developed the two mortality 
risk models using retrospective, pre-deployment data and applied 
them prospectively to our study population to identify a high-risk 
cohort of patients. Among the 2,365 patients who fell into this 
high-risk cohort, alert evaluation and confirmation within 3 h was 
associated with a greater decrease in mortality (ARD −4.50%, CI 
−8.31, −0.78% and ARR −13.19%, CI −22.81, −2.45%; P = 0.012) 
and SOFA progression (ARD −0.38, CI −0.71, −0.05; P = 0.025). 
The association with length of stay was slightly greater in the 
high-risk cohort than in the full sample, although it was no longer 
statistically significant. Full results on the high-risk stratum are pre-
sented in Table 2.

Antibiotic timing relative to TREWS and patient outcomes. 
Previous work has established an association between antibiotic 
timing relative to ED admission and patient mortality5–8,25. In the 
present study, we instead measure the association between anti-
biotic timing relative to a TREWS alert and patient outcomes. 
Adjusting for patient demographics, medical history, labs, vital 
signs, comorbidities and admitting hospital, patients in the target 
population who received antibiotics within 3 h of their alert had a 
lower mortality rate (ARD −3.54%, CI −5.52, −1.66%, and ARR 
−18.69%, CI −27.03, −9.36%; P < 0.001), SOFA score progression 
(ARD −0.26, CI −0.42, −0.11; P = 0.001) and median length of stay 
(ARD −11.58 h, CI −18.13, −5.03 h; P = 0.001) compared with those 
who received antibiotics >3 h after their alert. Associations in the 

high-risk cohort are presented in Extended Data Table 4. In addi-
tion, for the purposes of comparison with previous retrospective 
studies, we estimated the adjusted association between in-hospital 
mortality and each hour of delay from the time of the alert to first 
antibiotics for patients receiving antibiotics within 6 and 12 h of 
their alert. The 6- and 12-h windows were chosen for comparison 
to previous literature. The adjusted odds ratios for in-hospital mor-
tality per hour delay in antibiotics were 1.08 (CI 1.02, 1.15) and 1.05 
(CI 1.02, 1.09) among patients who received antibiotics within 6 and 
12 h, respectively. In the high-risk cohort, the adjusted odds ratios 
for in-hospital mortality per hour delay in antibiotics were 1.07 (CI 
0.99, 1.17) and 1.08 (CI 1.03, 1.14) among patients who received 
antibiotics within 6 and 12 h, respectively.

Discussion
In the present study, we found that, after adjusting for a range of 
patient variables, timely provider evaluation and confirmation of 
the TREWS alert were associated with reduced mortality among 
target sepsis patients, as well as improved SOFA score progression 
and reduced median length of stay among survivors. Absolute asso-
ciations were of greater magnitude among patients prospectively 
identified as being at high risk for death without timely treatment. 
In addition, we found that delay in antibiotics relative to the time 
of the alert was associated with increased patient mortality in our 
target population. These results complement our companion paper 
which found that TREWS had high adoption (89% of alerts received 

Table 1 | Sample statistics

All patient 
encounters

Sepsis 
patients not 
flagged by the 
alert

Sepsis patients 
who received 
an antibiotic 
before their 
alert

Primary analysis cohort (n = 6,877) High-risk cohort (n = 2,365)

Alert  
confirmed 
within 3 h

Alert not  
confirmed  
within 3 h

P valuea Alert 
confirmed 
within 3 h

Alert not 
confirmed 
within 3 h

P valuea

No. of encounters 590,736 2,458 3,006 4,220 2,657 – 1,430 935 –

No. of patients 342,650 2,268 2,826 3,925 2,577 – 1,379 923 –

Age (years) 51.7 ± 20.0 62.2 ± 17.6 63.6 ± 18.7 66.6 ± 17.5 65.1 ± 16.8 < 0.001 67.9 ± 16.0 65.1 ± 15.6 < 0.001

Documented men 333,877 (56.5%) 1,130 (46.0%) 1,458 (48.5%) 1,992 (47.2%) 1,239 (46.6%) 0.661 701 (49.0%) 437 (46.7%) 0.296

Admitted from ED 412,163 (69.8%) 1,496 
(60.9%)

2,545 (84.7%) 4,148 (98.3%) 2,434 (91.6%) < 0.001 1,414 (98.9%) 866 (92.6%) < 0.001

ED discharge 287,264 (48.6%) 16 (0.7%) 14 (0.5%) 62 (1.5%) 24 (0.9%) 0.052 14 (1.0%) 9 (1.0%) 0.862

Ever admitted to ICU 24,254 (4.1%) 1,013 (41.2%) 1,393 (46.3%) 1,811 (42.9%) 1,273 (47.9%) < 0.001 1,147 (80.2%) 731 (78.2%) 0.254

Mean CCI 2.7 ± 3.2 5.8 ± 3.8 6.2 ± 4.0 6.5 ± 3.9 6.5 ± 4.0 0.372 7.5 ± 4.0 6.9 ± 4.1 < 0.001

At admissionb

 APACHE II 3.3 ± 3.8 10.3 ± 7.0 11.3 ± 6.8 13.4 ± 8.2 13.7 ± 8.8 0.972 21.3 ± 8.0 21.8 ± 8.4 0.071

 SOFA 0.7 ± 1.5 3.5 ± 3.5 3.6 ± 3.2 4.6 ± 3.8 5.0 ± 3.8 < 0.001 8.5 ± 3.5 8.8 ± 3.4 0.014

 GCS < 15 44,048 (7.5%) 674 (27.4%) 986 (32.8%) 1,647 (39.0%) 1,085 (40.8%) 0.143 1,053 (73.6%) 710 (75.9%) 0.227

 Lactate > 2 mmol l–1 23,033 (3.9%) 628 (25.5%) 1,191 (39.6%) 3,248 (77.0%) 1,711 (64.4%) < 0.001 1,129 (79.0%) 644 (68.9%) < 0.001

Sepsis 13,680 (2.3%) – – – – – – – –

Septic shockc 5,215 (0.9%) 688 (28.0%) 975 (32.4%) 1,813 (43.0%) 1,084 (40.8%) 0.081 1,120 (78.3%) 660 (70.6%) < 0.001

Had an alert 42,089 (7.1%) – – – – – – – –

At alert

 APACHE II – – – 11.7 ± 7.5 11.9 ± 8.1 0.555 19.3 ± 7.4 19.6 ± 8.1 0.567

 SOFA – – – 4.0 ± 3.4 4.3 ± 3.4 < 0.001 7.7 ± 3.0 7.8 ± 3.0 0.159

 GCS < 15 – – – 1,381 (32.7%) 907 (34.1%) 0.237 949 (66.4%) 645 (69.0%) 0.199

 Lactate > 2 mmol l–1 – – – 3,160 (74.9%) 1,630 (61.3%) < 0.001 1,099 (76.9%) 595 (63.6%) < 0.001

Died in hospital 4,610 (0.8%) 318 (12.9%) 392 (13.0%) 617 (14.6%) 509 (19.2%) < 0.001 422 (29.5%) 320 (34.2%) 0.018

All discrete values are reported as ‘count (percentage)’ and all continuous values are reported either as ‘mean ± s.d.’ or ‘median (interquartile range (IQR))’. aP values were based on Pearson’s χ2 and 
two-sided Wilcoxon’s rank-sum tests for categorical and continuous variables, respectively. P values were not adjusted for multiple comparisons. b‘At admission’ values were calculated based on 
measurements taken within 24 h of ED triage or admission. cSeptic shock was defined as being both positive for sepsis and either receiving vasopressors or having a lactate >4 mmol l−1 within 48 h of the 
first signs of organ dysfunction.
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an evaluation) and timely provider confirmation of the TREWS 
alert was associated with a 1.85-h reduction in median time from 
alert to first antibiotic order22.

Although studies of deployed sepsis early warning systems have 
been uncommon, a few studies have found positive benefits when 
using such systems16,27–29. Three independent pre-/post-deployment 
studies found that sepsis-related mortality dropped after sys-
tem deployment27–29. One major limitation of pre-/post-studies of 
sepsis-related mortality is the potential for surveillance bias, which 
occurs when more patients are coded as septic in the post-period 
due to the alerting tool or concurrent changes in coding practices. 
Without appropriate adjustments, clinical outcomes appear to have 
improved because the group of patients coded as septic are less sick 
than before the alert was implemented. Our study avoided this issue 
by including only post-deployment data, making use instead of nat-
ural variability in provider practice to create a convenience control 
group30,31. The reasons behind this variability in provider practice 
are explored more deeply in our companion paper22.

One randomized trial by Shimabukuro et al. found that use of 
a sepsis alert system led to reductions in all-cause mortality and 
length of stay16. Although limited in size (42 septic patients and 142 
total patients) and restricted to ICU patients, Shimabukuro et al. 
is, to our knowledge, the only randomized trial of a prospective 
sepsis alerting system. In contrast, our study does not make use of 
randomization. However, our findings are consistent with those of 
Shimabukuro et al. and complement their findings by including a 
larger sample of patients from diverse units across multiple sites.

Studies of two other systems did not demonstrate impact on 
patient outcomes11,19,20. One pre-/post-deployment study found that 
deployment led to modest but statistically significant increases in 
lactate ordering and intravenous fluid administration but did not 
impact antibiotic ordering or patient outcomes11. In follow-up 
interviews, providers reported that the alerts were unlikely to affect 
their perception of a patient20. A similar pre-/post-deployment 
study found that deployment of an early warning system did not 
lead to changes in clinical practice or patient outcomes19. A notable 
difference between these systems and TREWS is the accuracy of the 
alerts. For example, the latter study revealed that only 29% of sep-
sis cases were flagged by the alerts and all alerts on sepsis patients 
occurred after the administration of antibiotics, at which point the 
alerts had limited clinical utility19. A recent evaluation of the Epic 
Sepsis Model, one of the most widely deployed sepsis early warning 
systems, found that only 12% of alerts occurred on sepsis patients 

and only 33% of sepsis cases were flagged by the system32. In con-
trast to these three studies, our companion paper found that 82% 
of sepsis cases were flagged by the TREWS alerts and 38% of alerts 
with an evaluation were confirmed by a provider22.

Beyond sepsis, a recent large-scale study of the Advanced Alert 
Monitor—an alert system for general deterioration—found that the 
alert system improved patient outcomes18. Although an important 
demonstration of the potential of such systems, this study relied on 
dedicated staff to respond to each alert. In contrast, the system stud-
ied in the present study is a decentralized bedside system that does 
not trigger pop-ups or phone calls that interrupt the clinical work-
flow. There were no dedicated staff for reviewing and responding 
to alerts and providers chose if, when and how to respond to alerts. 
Having a decentralized bedside system may allow TREWS to better 
scale to hospital systems that lack the resources to allocate staff to 
review all alerts. On the other hand, systems without dedicated staff 
require buy-in and adoption from providers to be successful. In our 
companion paper, we used EHR data to examine various patient, 
provider and environmental factors associated with the adoption 
of TREWS22. In a further separate study, we analyzed qualitative 
impressions of TREWS and factors influencing its integration into 
workflow through semi-structured interviews with providers using 
the system33.

Much of the work on early detection and treatment for sepsis 
has been motivated by a collection of retrospective studies show-
ing that delays in antibiotics are associated with worse patient 
outcomes5–8,25. In the absence of a viable alternative, these studies 
generally measured the time to antibiotics using ED presentation as 
time zero. Although informative, these results do not suggest a way 
to recognize sepsis earlier and, as a result, much of the subsequent 
work has focused on reducing the time from recognition to treat-
ment, for example, the extensive work on sepsis treatment bundle 
guidelines9,10. A recent position paper from the Infectious Disease 
Society of America highlights the need for such a time zero, noting 
that existing proposals for time zero are overly complex and sub-
jective24. In the current study, the per-hour associations we found 
between time-to-first antibiotics and mortality closely matched two 
of the largest such retrospective studies7,25. Among sepsis patients 
who received antibiotics within 6 h and 12 h, these studies found an 
adjusted per-hour odds ratios for mortality of 1.09 (CI 1.05, 1.13) 
and 1.04 (CI 1.03, 1.06), respectively (we found odds ratios of 1.08 
(CI 1.02, 1.15) and 1.05 (CI 1.02, 1.09)). The implication of this 
result is that the potential benefits of early recognition implied by 
these retrospective studies could be realized using a high-precision 
bedside early warning system such as TREWS. Furthermore, such 
high-precision alerts may be used as a more objective time zero 
when measuring compliance with sepsis treatment guidelines.

Previous studies have reported different magnitudes of mortal-
ity reduction associated with early antibiotic administration, with 
the strongest benefits observed in patients with septic shock7,8. 
However, thus far, these retrospective studies have not outlined 
methods to prospectively identify patients at highest risk for devel-
oping septic shock. One important finding of the present study is 
that patients who benefit more from timely treatment, namely, the 
high-risk cohort, can be identified near the time of the alert, which 
may be used to prioritize alerts. Adding an indicator of alert pri-
ority, alerting a rapid response team to high-risk cases or limiting 
alerts to such cases could reduce alert burden and help providers 
allocate time and resources to the patients most likely to benefit 
from timely intervention.

Our study has several limitations. First, the present study reflects 
one set of prespecified alert settings; the behavior of the alert, and 
thus associations between alert use and clinical outcomes, may vary 
under different alert settings. For example, in this deployment, the 
timing of the alerts was optimized to issue alerts only when patients 
had notable findings such as the presence of deterioration in key 
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Fig. 2 | Distribution of the time from which the TREWS alert was given to 
the time confirmation was entered for the target population. Each bar has 
a width of 1 h, and the bar height represents the number of subjects who had 
their alert confirmed in that 1-h time bin. The dashed line is placed at 3 h, 
such that bars to the left and right of the line correspond to subjects in the 
study and comparison arms, respectively. Note that 1,840 (27%) patients in 
the target population either did not have an evaluation entered or had their 
alert dismissed by a provider and thus do not appear in this plot.
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markers. In future deployments, this restriction may be relaxed to 
provide earlier warning and more lead time.

Second, although we adjusted for a substantial list of potential 
confounding variables, we did not conduct a randomized trial, and 
therefore, we observed that associations may be subject to resid-
ual confounding; that is, it is possible that unobserved variables 
remained not included in our analysis, which cause both the pro-
vider response to TREWS and patient outcomes. Aspects of patient 
presentation that are not captured through clinical data in the EHR 
or billing codes are not represented in our patient variables. A recent 
paper raised the concern that observational studies on sepsis bun-
dles do not account sufficiently for providers appropriately delaying 
care on medically complex patients24. We have attempted to address 
this concern by adjusting for the coding of comorbidities that may 
mimic sepsis, but it is possible that suspected comorbidities that are 
not documented as codes were not included. In addition, besides 
the hospital at which the encounter occurred, we have not adjusted 
for provider-specific variables. Thus, if alert confirmation was asso-
ciated with patient care, for reasons that are not explained by patient 
variables, this may lead to additional confounding. Unfortunately, 
large-scale randomized trials of early warning systems are opera-
tionally difficult to carry out, requiring tight control over clinical 
response if randomizing at the patient level or deployments span-
ning many sites if randomizing at the unit or hospital level. The 
most common alternative, pre-/post-deployment studies, suffer 
from their own set of potential biases such as surveillance bias and 
changes in treatment standards over time. Although we used a pro-
spective cohort design in the present study, it is likely that all three 
types of studies—randomized, pre/post and cohort—will be needed 
to improve our understanding of these systems.

Third, there is continued debate about how to reliably iden-
tify sepsis retrospectively. We identified sepsis cases using an 
EHR-based sepsis phenotype that accounts for comorbidities that 
mimic sepsis and has shown increased sensitivity and precision 
compared with the alternatives23,34, but we cannot exclude the pos-
sibility that some identified patients had noninfectious syndromes 
with symptoms that mimic the presentation of sepsis. Fourth, we 
did not have data on whether the antibiotics given to a patient were 
appropriate for their infection. Assessing the appropriateness of 
antimicrobial therapy, potentially via positive blood culture results 
when available, may give more accurate assessments of when effec-
tive treatment began and sepsis-related outcomes5,35. Fifth, our 
study was limited to a single hospital system and geographical 
region. Although studies including more diverse populations from 

other geographical regions are needed, the concordance of our 
results with several diverse studies on antibiotics timing suggests 
that our results may be applicable to a broader target population. 
Finally, the present study considers the associations between alert 
use and patient outcomes on a target population of sepsis patients 
who received an alert but had not received antibiotics at the time of 
the alert. It is also important to consider the impact of TREWS on 
other populations. For example, it is important to ensure that alerts 
on nonsepsis patients do not lead to over-prescription of antibiotics 
and that resources are not being drawn away from sepsis patients 
who do not receive an alert. These populations will be the subject 
of future studies.

Although large-scale randomized trials are needed, our findings 
indicate the potential for high-precision alert systems to identify 
sepsis patients early and improve patient outcomes. Furthermore, 
our findings among high-risk patients indicate that future alert sys-
tems may reduce overall alert burden by prioritizing alerts on cer-
tain patients. Work is under way to further improve on TREWS and 
to generalize TREWS to other acute conditions. Furthermore, work 
is needed to understand how the use and benefits of alert systems 
evolve over time, best practices for presenting information from 
ML-based alerts in critical care settings, and the tradeoffs between 
workflows with and without dedicated staff in terms of provider 
burden, benefits to patients and scalability.
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Methods
The present study was approved by the Johns Hopkins University internal review 
board (IRB no. 00252594) and a waiver of consent was obtained.

TREWS. TREWS is an ML-based early warning system that continuously monitors 
patients for risk of sepsis using routinely collected EHR data. Its underlying model 
uses vital signs, laboratory data, clinician notes, medication history (excluding 
antibiotic orders), procedure history and clinical history to generate a sepsis 
risk score in real time as new information becomes available in the EHR. The 
score is based on an approach that allows the model36 to account for different 
sepsis presentations and to incorporate patient context such as confounding 
comorbidities, procedures and level of care. For a full description of the TREWS 
model and a retrospective performance evaluation, as well as the interface, 
deployment and integration into the clinical workflow, see our companion paper22. 
Importantly, when an alert occurs, providers can enter a dedicated TREWS page 
in the EHR that displays various pieces of information about the alert and the 
patient and allows the provider to enter a patient evaluation. An evaluation consists 
of entering a suspected source of infection (confirmation) or clicking a button to 
indicate that no new or worsening infection is present and then reviewing the list 
of organ dysfunction indicators and removing any that the provider believes should 
not be attributed to sepsis (dismissal). If a provider left the TREWS page without 
entering an evaluation, the interaction is not counted as an evaluation in the 
context of the present study. We used these evaluations as our primary measure of 
provider interaction with TREWS and to define study and comparison arms.

Population. We conducted a prospective, multi-site, two-arm cohort study using 
EHR data from two academic and three community hospitals at which the TREWS 
alert system was deployed. Patients were eligible for inclusion if they were aged 
≥18 years and presented to the ED or were admitted to an inpatient unit at one of 
the five deployment hospitals between deployment of TREWS and 30 September 
2020. The specific hospitals and deployment dates were Howard County General 
Hospital (HCGH, 1 April 2018), Suburban Hospital (10 October 2018), Bayview 
Medical Center (BMC, 27 February 2019), Johns Hopkins Hospital (JHH, 16 April 
2019) and Sibley Memorial Hospital (15 May 2019). We treated each time a patient 
presented to the ED or was admitted as a unique patient encounter and included 
each encounter separately.

For our primary analysis of patient outcomes, we included all patients who 
triggered an alert at most 1 h before admission or ED triage and met the criteria 
for sepsis based on a strategy called EHR-based sepsis phenotyping23,34. Briefly, 
this approach is a refinement of the criteria used in the third sepsis consensus 
definition (Sepsis-3)37 and the CDC Adult Sepsis Event Toolkit sepsis38, in which 
patients with features consistent with sepsis, but explained by other conditions (for 
example, hemorrhage) are excluded. As the full description of this sepsis definition 
is involved, we refer interested readers to the original work in which it appeared23.

To ensure that the alerts considered were actionable and to exclude outliers, 
we excluded patients who did not receive antibiotics within 24 h of the alert. See 
Extended Data Table 5 for a list of the antibiotics considered. Patients who had 
antibiotics administered before the alert were excluded, because we are interested 
primarily in patients for whom the alert may impact antibiotic administration timing 
and antibiotics given before the alert could not have been influenced by the alert. 
Finally, patients admitted directly to the ICU who did not pass through the ED were 
excluded because such patients were likely to have received previous treatment not 
reflected in the health record. A waterfall diagram for this cohort is shown in Fig. 1.

Study outcomes. The primary outcome was all-cause in-hospital mortality which 
was measured as the patient’s status at discharge. Secondary outcomes were the 
difference between a patient’s SOFA score at the time of the alert and 72 h after the 
alert and hospital length of stay after the alert until discharge among survivors39. 
SOFA scores were calculated using the worst measurements taken between 48 h 
and 72 h after the alert. For patients who died or were discharged before 72 h after 
the alert, the SOFA score was based on the worst measurements from the 24 h 
preceding death or discharge.

Study design. To evaluate the association between provider response to TREWS 
and patient outcomes, we compared outcomes between two arms: patients who 
had their alert evaluated and confirmed by a provider within 3 h of the alert (study 
arm) and patients who did not (comparison arm). The comparison arm is made 
up of patients who never had an evaluation entered into the TREWS page, as well 
as patients whose alert was dismissed. To account for potential differences between 
the arms, we adjusted for a variety of patient variables described in detail below30,31. 
We made this comparison among all included patients and in the cohort of 
high-risk patients (described in detail below). Patients who died during their stay 
were excluded from the length-of-stay analysis. Patients who left against medical 
advice, were discharged to a hospice or were transferred to another acute care 
facility were excluded from the SOFA progression analysis (all these patients were 
included in the mortality analysis).

Adjustment variables. The relationship between antibiotics timing and patient 
outcomes may be confounded by several aspects of patient presentation.  

We adjusted for a range of patient variables to account for potential confounding. 
Similar to previous studies7,8,25, we adjusted for patient age, documented sex, 
comorbidity history and measurements taken during the current encounter. To 
account for differences due to pre-existing conditions and patient history, we 
adjusted for the patient’s Charlson comorbidity index (CCI) as well as individual 
indicators for a history of diabetes (with and without complications), dementia, 
malignant tumors or metastatic solid tumors. These conditions were identified 
from International Classification of Diseases, 10th revision (ICD-10) codes included 
in the patient’s medical history49. To account for differences in treatment arising 
from patient presentation at the current visit, we adjusted for several sepsis-relevant 
labs, vital signs and treatments, including systolic blood pressure, Glasgow 
Coma Score (GCS) <15 (indicating any abnormal mental activity)8, temperature, 
white blood cell count, lactate >2 mmol l−1 and indicators for vasopressors and 
mechanical ventilation. We additionally adjusted for composite measures of acute 
patient severity, including individual SOFA score components and the APACHE 
II score39,40. For labs and vital signs, we used the most recent measurement taken 
in the 24 h before the alert and imputed a normal value if no measurement was 
observed during this period. SOFA and APACHE II scores were calculated using 
the worst measurements from the 24 h before the alert. In cases where the alert 
occurred within 12 h of presentation to the ED or admission to an inpatient unit 
(whichever came first), we used the worst measurements recorded within 12 h of 
presentation/admission to allow for lab processing and recording delays.

In addition to the variables used in previous studies, we included several 
additional patient and hospital-related variables. In medically complex patients, 
clinicians may wish to obtain more information on the patients before ordering 
antibiotics. To account for this, we further adjusted for the presence of several 
comorbidities that may obscure a sepsis diagnosis, including metastatic cancer, 
end-stage renal disease, congestive heart failure, acute liver disease, gastrointestinal 
bleeding and chronic obstructive pulmonary disease. These comorbidities were 
identified from ICD-10 codes listed as part of the patient’s problem list and marked 
as present on arrival. In addition, for ED patients, we adjusted for whether or not the 
trauma team was activated on arrival. To account for differences in clinical practice 
between hospitals, we included an indicator for the admitting hospital. Finally, we 
included a binary indicator for presentation at the hospital after 1 April 2020, to 
account for differences in treatment patterns arising from the COVID-19 pandemic.

High-risk cohort definition. In addition to the TREWS sepsis detection model, a 
separate model was developed for forecasting how much a patient’s mortality risk 
would increase without timely antibiotics (that is, sensitivity to antibiotic timing). 
Identifying patients with large increases in mortality risk may allow providers to 
prioritize alerts on patients who will benefit the most from timely care and allows 
us to examine heterogeneity in the associations between alert use and patient 
outcomes, that is, to perform stratification. This approach was inspired by previous 
work by VanderWeele et al. on identifying subgroups of patients who respond most 
to treatment26. VanderWeele et al. performed effect stratification by first developing 
a model to predict, based on baseline variables, whether a patient would respond 
to treatment and then estimated treatment effects among patients predicted to have 
a strong response. We applied a similar approach to our study by first developing 
a model to predict how much a patient’s mortality risk would increase without 
timely antibiotics (analogous to predicting treatment response) and then using this 
prediction to stratify the associations between interaction with TREWS and  
patient outcomes.

To predict sensitivity to antibiotic timing, we forecast each patient’s 
probability of in-hospital mortality with and without administration of antibiotics 
within 3 h of their alert and then took the ratio between these two probabilities. 
A higher ratio indicates a higher predicted sensitivity to antibiotic timing. The 
probability of in-hospital mortality with and without 3-h antibiotics was forecast 
using two separate ridge logistic regression models trained on retrospective EHR 
data from before deployment of TREWS. These data included 4,860 adult patients 
from our development dataset who were admitted to three of the five deployment 
hospitals (HCGH, JHH and BMC) between 1 January 2016 and 31 March 2018, 
who would have triggered an alert during their stay had the alert been active and 
who met all the inclusion criteria for our primary analysis (described above). 
Both models included as predictors all baseline variables described in the 
previous section except for the admitting hospital. All-cause in-hospital mortality 
was the binary prediction target. To account for nonlinearities, continuous lab 
values and vital signs were included as piecewise linear terms according to the 
thresholds used in APACHE II (ref. 40). The time from alert to first antibiotic 
administration was calculated on this retrospective data by running the TREWS 
model retrospectively to calculate the approximate time at which an alert would 
have occurred had TREWS been active for these patients. The two logistic 
regression models were trained separately on patients who did and did not receive 
an antibiotic within 3 h of when their alert would have occurred. To define a 
discrete high-risk cohort, a threshold for the ratio of mortality probabilities was 
chosen such that approximately one-third of patients in the retrospective data 
were identified as high risk.

The regularization strength for both models was tuned using grid search and 
20 random 50:50 splits of the development data. For each random split, the models 
were trained and a high-risk threshold was chosen on the training set, the high-risk 
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patients were identified on the test set and the adjusted association between  
timely antibiotics and in-hospital mortality was estimated among high-risk  
patients in the test set. Then, these estimates were averaged across the 20 random 
test sets, the regularization strength was chosen that maximized this average and 
the models were retrained using all of the retrospective data and the selected 
regularization strength.

To determine whether a patient in our study population fell into the high-risk 
cohort, both logistic regression models were applied to the patient’s baseline 
variables, and the patient was identified as high risk if the ratio of the two predicted 
probabilities was above the high-risk threshold. Note that these models were 
used to identify high-risk patients only for analysis and were not presented to the 
frontline users as part of the TREWS system.

Statistical analyses. For in-hospital mortality, we used logistic regression to 
estimate the ARD and ARR between study and comparison arms41. We used linear 
regression to estimate the adjusted difference in mean SOFA progression and 
quantile regression to estimate the adjusted difference in median length of stay42. 
To account for nonlinearities, continuous lab values and vital signs were included 
as piecewise linear terms according to the thresholds used in APACHE II (ref. 40). 
 For all analyses, heteroskedasticity-robust estimators were used to estimate 
standard errors and construct CIs. All reported CIs are 95% CIs, and all P values 
correspond to two-sided tests. All statistical models were implemented via the 
Python packages ‘scikit-learn’ v.0.24.2 and ‘statsmodels’ v.0.12.1 (refs. 43,44).

Secondary and sensitivity analyses. As a secondary analysis, we estimated 
the association between time from alert to first antibiotic administration and 
patient outcomes. Despite previous work demonstrating an association between 
timely antibiotics and mortality when time-to-first antibiotics is measured from 
admission, onset or recognition5–10, it is important to establish that there is still an 
association when the TREWS alert is used as time zero and validate the potential 
to use a TREWS alert to initiate treatments in future studies. For example, suppose 
that providers can recognize most sepsis patients who need immediate antibiotics 
before the alert occurs. In this case, we might expect to see little association 
between antibiotic timing and patient outcomes in the remaining sepsis patients 
who did not receive antibiotics before their alert (that is, our study population). 
Using the same methods described above, we compared adjusted outcomes 
between patients in the target population who received their first antibiotic within 
3 h of their alert with those who did not. In addition, for the purposes of direct 
comparison with previous work on antibiotic timing, we emulated the analyses 
from two previous retrospective studies on antibiotic timing7,25. These studies were 
chosen for their size and replicability. We estimated the per-hour adjusted odds 
ratio between time from alert to first antibiotic administration and in-hospital 
mortality using logistic regression and including all variables described above. We 
repeated this estimate including patients who receive their first antibiotics within 6 
and 12 h, corresponding to the two previous studies.

Last of all, we tested the robustness of our analyses by repeating the primary 
analysis (adjusted comparison of patient outcomes between arms) under several 
different modifications. First, to ensure that our conclusions were not dependent 
on our choice of statistical method, we repeated the analysis using an alternative 
method, inverse probability of treatment weighting45–47. We used logistic regression 
for the probability of treatment model and stabilized and truncated weights at the 
1st and 99th weight percentiles to reduce estimation variance48. Second, because 
a patient’s problem list reflects real-time diagnoses made by providers, it is less 
reliable than final diagnoses that reflect all information from a patient’s stay. 
Similarly, clinicians may not always mark a present-on-arrival diagnosis as such. 
We tested the sensitivity to these issues by replacing ICD-10 codes in the patient’s 
problem list with final diagnosis ICD-10 codes. Final diagnosis codes are more 
comprehensive but may include information from well after the patient’s alert, 
leading to potential over-adjustment. Third, because we included each patient 
encounter separately in our data, we wished to ensure that our conclusions were 
not overly sensitive to a few patients with multiple encounters. We tested this 
sensitivity by repeating the analysis using only the first encounter for each patient. 
Fourth, the COVID-19 pandemic impacted both characteristics of patients in our 
data and the care those patients received. We tested the sensitivity to inclusion of 
data during the COVID-19 pandemic by repeating the analysis using only patients 
admitted before 1 April 2020. Finally, the list of antibiotics used to determine the 
time of first antibiotic administration was intentionally inclusive. To ensure that 
our results are not sensitive to the specific antibiotics included, we repeated the 
analysis using a restricted list of antibiotics which removes some antibiotics that 
are unlikely to be used either to treat sepsis or on adult patients. The restricted list 
removes amoxicillin, azithromycin, cefotaxime, dapsone, erythromycin, neomycin 
and rifampin from the antibiotics listed in Extended Data Table 5.

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The data are not publicly available because they are from EHRs approved for 
limited use by Johns Hopkins University investigators. Making the data publicly 

available without additional consent, ethical or legal approval might compromise 
patients’ privacy and the original ethical approval. To perform additional  
analyses using this data, researchers should contact A.W.W. or S.S. to apply  
for an IRB-approved research collaboration and obtain an appropriate data  
use agreement.

Code availability
The TREWS early warning system described in the present study is available from 
Bayesian Health, New York. The underlying source code is proprietary intellectual 
property and is not available. Code for the primary statistical analyses and 
development of the high-risk cohort can be found at https://github.com/royadams/
adams_et_al_2022_code.
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Extended Data Table 1 | Sample statistics by hospital
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Extended Data Table 2 | Extended sample statistics
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Extended Data Table 3 | Sensitivity analyses
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Extended Data Table 4 | Associations between antibiotics timing and patient outcomes

Nature Medicine | www.nature.com/naturemedicine

http://www.nature.com/naturemedicine


Articles Nature Medicine

Extended Data Table 5 | List of included antibiotics
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